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Motivation
Hedging: Theory vs. Practice

I Hedging problem: Use traded assets to manage the risk associated
with a short position in a derivative security.

I Classical mathematical finance:
I Specify a stochastic model: describes stochastic behaviour of certain

financial variables in terms of deterministic input quantities, the model’s
parameters.

I Compute hedging strategy according to some criterion.
I Example: delta hedging in the Black–Scholes model.

I In practice:
I Parameters are frequently recalibrated to market prices of traded options.
I Out-of-model hedging: sensitivities with respect to changes in these

parameters are hedged by trading in options.
I Example: Recalibration of the Black–Scholes volatility parameter and vega

hedging.

I Logically inconsistent.
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Motivation
Out-of-model hedging

Rebonato ’05:

“Needless to say, out-of-model hedging is

on conceptually rather shaky ground: if the

volatility is deterministic and perfectly known,

as many models used to arrive at the price

assume it to be, there would be no need to

undertake vega hedging. Furthermore, cal-

culating the vega statistics means estimating

the dependence on changes in volatility of a

price that has been arrived at assuming the

self-same volatility to be both deterministic and

perfectly known. Despite these logical prob-

lems, the adoption of out-of-model hedging

in general, and of vega hedging in partic-

ular, is universal in the complex-derivatives

trading community.”

2 / 18



This paper

I Hedging problem with dynamic trading in three liquid assets: stock,
bond, and a “call” on the stock.

I Preferences: Moderate risk and uncertainty aversion around a
recalibrated Black–Scholes model.

I Goal: Find almost optimal hedging strategies and indifference prices.

I To obtain explicit formulas, study limit for small uncertainty aversion.

I Delta-vega hedging arises naturally as an asymptotically optimal
strategy.

I Asymptotic indifference price corrections are determined by disparity
between vegas and second-order greeks (gammas, vannas, volgas) of
the non-traded option and the call.
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Model Uncertainty



Hedging and models

I Crucial for hedging: accurate description of future volatility of the stock,
i.e., a stochastic model for the financial market.

I Prime example: Black–Scholes model.
I Input: volatility parameter.
I Output: unique arbitrage-free price and replicating strategy for the option.

I But: finance 6= physics; every model is a useful approximation at best.
�! substantial model uncertainty.

I Challenges:
I Consistently assess impact of model uncertainty?
I Robust hedging strategies that take model uncertainty into account?

I Most widely used approach in the literature: Uncertain volatility model.
[Avellaneda/Levy/Paras ’95; Lyons ’95]
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Uncertain volatility model

I Volatility process (�t)t2[0,T ]

evolves in band [�
min

,�
max

];
no assumptions on dynamics.

I Typical objective: find superhedging strategy for all possible volatilities.
�! worst-case approach: infinite risk and uncertainty aversion.

I Yields robust no-arbitrage bounds.

I Drawbacks:
I Ad hoc distinction between “possible” and “impossible” models.
I All “possible” models are taken equally seriously.
I No control over P&L if volatility leaves given band.

I Interpolation between classical approach (one model, zero uncertainty)
and worst-case approach?
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Variational preferences

I Maccheroni/Marinacci/Rustichini ’06: Decision-theoretic axioms
suggest representation

inf
P

�
EP [U(Y )] + ↵(P )

�

I Utility function U describes risk aversion in a given model.

I Penalty functional ↵ describes uncertainty aversion.

I Classical approach: infinite penalty for all but one model P .

I Worst-case approach: no penalty for a class P of plausible models;
infinite penalty otherwise.

I “Smooth” alternatives?
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Moderate uncertainty aversion?

Multiplier preferences of Hansen/Sargent ’01:
I Models penalized by relative entropy with respect to a reference

model.

I No strict line between “possible” and “impossible” models.

I Penalty is only finite for absolutely continuous measures. Not
applicable to volatility uncertainty.

This paper:
I Choose similar penalty.
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Hedging Problem



General approach

1. Choose a (big) class of plausible models.

2. Choose a reference model (“best guess”).

3. Choose a penalty functional, e.g., some “distance” to the reference
model. Describes how seriously you take other models.

4. For each hedging strategy, compute its performance in the above sense
(variational preferences).

5. Find an optimal strategy for this criterion.
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Plausible models
I Dynamic trading in stock and call: model joint dynamics of stock S and

implied volatility ⌃ of the call. [Lyons ’97, Schönbucher ’99, . . . ]

I (S,⌃): canonical process on C([0, T ];R2).

I P: probability measures P under which S,⌃ > 0 and

dSt = St�
P
t dW 0

t ,

d⌃t = ⌫Pt dt+ ⌘Pt dW 0

t +
q
⇠Pt dW 1

t ,

for suitable �P , ⌫P , ⌘P , and ⇠P � 0.

I Want call price Ct = C(t, St,⌃t) to be drift-less like S.

I Itô on C(t, St,⌃t) yields nonlinear drift condition:

⌫Pt C
⌃

+ 1

2

S2

t CSS((�P
t )

2 � ⌃2

t ) + �P
t ⌘

P
t St CS⌃

+ 1

2

((⌘Pt )
2 + ⇠Pt ) C

⌃⌃

= 0.

vega gamma vanna volga
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Reference model

I Recalibrated Black–Scholes.

I Corresponds to ⌫P = ⌘P = ⇠P = 0 and �P = ⌃.

“The future implied volatility stays at its currently observed level.”

I Benchmark case; general approach extends to more realistic reference
models.
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P&L process

I Non-traded asset:
I Payoff h(ST ).
I V(·, ·,�): smooth solution to the Black–Scholes PDE with volatility � and

terminal condition h.
I Time-t reference value: Vt = V(t, St,⌃t) (“mark-to-model”).
I To be hedged.

I P&L process:

Y ✓,�
t = V

0

+

Z t

0

✓u dSu +

Z t

0

�u dCu � Vt.

I YT is actual P&L at maturity because VT = V(T, ST ,⌃T ) = h(ST ).
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Penalty functional

I Penalize “mean-square” deviations from the reference BS model:

↵

 (P ) =
1
2 

E

P



Z T

0

U

0(Y ✓,�
t )

n

(⌫Pt )2 + (�P
t � ⌃t)

2 + (⌘Pt )2 + (⇠Pt )2
o

dt

�

I Recall:
⌫

P : drift of implied volatility
�

P : spot volatility
⌘

P : correlated volatility of implied volatility
⇠

P : uncorrelated squared volatility of implied volatility

I
 > 0 measures magnitude of uncertainty aversion.
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Hedging problem
I Objective:

J

 (✓,�, P )

= E

P



U(Y ✓,�
T ) +

1
2 

Z T

0

U

0(Y ✓,�
t )

n

(⌫Pt )2 + (�P
t � ⌃t)

2 + (⌘Pt )2 + (⇠Pt )2
o

dt

�

I Hedging problem:

v( ) = sup
✓,�

inf
P

J (✓,�, P )

I To obtain explicit results: study limit  # 0.

I Goal:
I Expansion for small uncertainty aversion:

v( ) = U(0)� (?)  + o( ).

I Leading-order optimal strategy: (✓ ,� ) such that

v( ) = inf
P

J

 (✓ ,� , P ) + o( ).

13 / 18



Hedging problem
I Objective:

J

 (✓,�, P )

= E

P



U(Y ✓,�
T ) +

1
2 

Z T

0

U

0(Y ✓,�
t )

n

(⌫Pt )2 + (�P
t � ⌃t)

2 + (⌘Pt )2 + (⇠Pt )2
o

dt

�

I Hedging problem:

v( ) = sup
✓,�

inf
P

J (✓,�, P )

I To obtain explicit results: study limit  # 0.

I Goal:
I Expansion for small uncertainty aversion:

v( ) = U(0)� (?)  + o( ).

I Leading-order optimal strategy: (✓ ,� ) such that

v( ) = inf
P

J

 (✓ ,� , P ) + o( ).

13 / 18



Results



Almost optimality of delta-vega hedging

Under regularity and integrability assumptions. . .
I Dynamically recalibrated delta-vega hedge is optimal at the

leading-order O( ):
I # of calls �? = V⌃/C⌃ neutralizes vega.

I # of shares ✓? = VS � �

?CS neutralizes delta.

I Greeks V⌃, C⌃, VS , and CS computed in BS model and evaluated at time t

with current stock price St and current implied volatility ⌃t.

I infP J

 (✓?,�?, P ) = v( ) + o( ).

I Value has asymptotic expansion of the form

v( ) = U(0)� U 0(0) ew + o( ) as  # 0.

I What’s ew? First look at “worst-case model”.
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“Worst-case model”

I Vega-gamma-vanna-volga vectors for non-traded option and call:

v =
�
V
⌃

,⌃S2VSS ,⌃SVS⌃

,
1

2
V
⌃⌃

�
,

c =
�
C
⌃

,⌃S2CSS ,⌃SCS⌃

,
1

2
C
⌃⌃

�
.

I Candidate feedback control for fictitious adversary:

(⌫ ,� , ⌘ , ⇠ ) = (0,⌃, 0, 0) + e⇣ ,

where e⇣ = (e⌫, e�, e⌘, e⇠) is the solution to the linearly constrained quadratic
minimization problem

minimize
1

2

���e⇣
���
2

� v · e⇣ subject to c · e⇣ = 0 and e⇣
4

� 0.

I But: (⌫ ,� , ⌘ , ⇠ ) does not satisfy the original nonlinear constraint
exactly. Modify at order O( 2).
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Value expansion

I Recall value expansion: v( ) = U(0)� U 0(0) ew + o( ).

I e�, e⌘, e⇠: deviations of “worst-case model” P from reference BS model:

spot vol correlated vol of IV uncorrelated vol2 of IV
�P ⇡ ⌃+ e� ⌘P

 ⇡ e⌘ ⇠P
 ⇡ e⇠ 

I ew has probabilistic representation:

ew =
1

2
E

"Z T

0

eg(t, St,⌃0

) dt

#

eg(t, S,⌃) = ⌃S2 (VSS � �

?CSS) e� –(net gamma) ⇥ spot vol deviation
+⌃S (VS⌃ � �

?CS⌃) e⌘ –(net vanna) ⇥ correlated vol

+ 1
2 (V⌃⌃ � �

?C⌃⌃) e⇠ –(net volga) ⇥ uncorrelated vol2.

I Independent of risk aversion due to complete reference model.
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Indifference prices

I Indifference ask price for option V :

pa( ) = V + ew + o( )

I ew is “compensation” for model uncertainty.
I Independent of the utility function, like the value V in the complete

reference model.

I Sanity check:
I

ew = 0 if C is a call and V is a (multiple of a) put with matching strikes and
maturities.

I Model-free hedge by put-call parity.
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Summary

I Preferences for moderate uncertainty aversion: models are penalized
according to their distance from a reference model.

I Reference Black–Scholes model is dynamically recalibrated to the
market price of the traded option.

I Impact of uncertainty depends on disparity between the vegas,
gammas, vannas, and volgas of the non-traded and traded options.

I Delta-vega hedging arises naturally as leading-order optimal strategy.
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