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Problem Formulation

Problem: Determine optimal investment strategy when trading
between one risky and one riskless asset in trading horizon [t,T ] (for
0  t < T , T fixed).

I Optimal trading maximizes expected utility of terminal wealth.

I Under appropriate assumptions, study via associated Hamilton Jacobi
Bellman PDE.

Market: Stochastic volatility model.
I One riskless asset B

t

.

I One risky asset S
t

; drift and di↵usion depend on stochastic factor
driven by correlated Brownian motion.
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Overview

Only assumptions on utility function will be on asymptotic behavior
as wealth approaches 0 and 1.

Well-posedness of associated HJB equation not established.
I Nadtochiy & Zariphopoulou (2013) proved marginal HJB has a unique

viscosity solution.

Goal: Approximate optimal portfolio by building sub- and
super-solutions to marginal HJB equation.

1 Approximate viscosity solution of “marginal HJB equation”.
2 Use above to approximate value function.
3 Construct approximating portfolio.
4 Results valid when T � t small.
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Model Assumptions

W· := (W 1
· ,W

2
· ) = 2-dimensional standard Brownian motion on

(⌦,F ,P); take natural filtration generated by W·, i.e.,

F
t

:= �(W
s

: 0  s  t), 0  t  T

Asset dynamics:

(
dS

t

= µ(Y
t

)S
t

dt + �(Y
t

)S
t

dW 1
t

(risky)

dB
t

= rB
t

dt (riskless)
.

Stochastic factor dynamics:

dY
t

= b(Y
t

) dt + a(Y
t

) (⇢dW 1
t

+
p
1� ⇢2dW 2

t

).

Risky asset return has stochastic volatility dependent on factor driven
by an imperfectly correlated Brownian motion (⇢ 2 (�1, 1)).
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Model Assumptions

µ,� 2 C (R), with � > 0.

b 2 C 1(R), �, a 2 C 2(R), where �(y) := µ(y)�r

�(y) .

For some constant C ,

|a|+
����
1

a

����+ |a0|+ |a00|+ |b|+ |b0|+ |�|+ |�0|+ |�00|  C .

⇡
t

(⇡0
t

) denotes discounted amount of wealth invested in risky
(riskless) asset

I Only self-financing trading strategies considered.
I Portfolios identified by ⇡

t

.
I Wealth defined by X⇡

t

:= ⇡
t

+ ⇡0
t

.
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Model Assumptions

Investor’s wealth dynamics:

(
dX t,x ,⇡

s

= �(Y
s

)⇡
s

(�(Y
s

) ds + dW 1
s

), t  s  T

X t,x ,⇡
t

= x , 0 < x < 1
.

U
T

: (0,1) ! R is the utility function that indicates the investor’s
risk preferences at time T .

I Assume U
T

strictly increasing, concave, in C 5(R).

Set u(x) := U 0
T

(x), R(x) := � d

dx

⇣
1
2
u

2(x)
u

0(x)

⌘
.

I Following assumptions on asymptotic behavior of u(x), R(x) ensure,

for example, that U
T

(x) ⇠ x

1��

1�� near 0 and 1 for some positive � 6= 1.
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Assumptions on Asymptotic Behavior

Assume the following about the asymptotic behavior of u,R for some
fixed positive � 6= 1:

Assumption

For some positive � 6= 1,

0 < inf
x>0

(x�u(x))  sup
x>0

(x�u(x)) < 1

0 < inf
x>0

(x� |R(x)|)  sup
x>0

(x� |R(x)|) < 1

0 < inf
x>0

⇣
�x u

0(x)
u(x)

⌘
 sup

x>0

⇣
�x u

0(x)
u(x)

⌘
< 1

0 < inf
x>0

(x1+� |R 0(x)|)  sup
x>0

(x1+� |R 0(x)|) < 1

0 < inf
x>0

(x2+� |u00(x)|)  sup
x>0

(x2+� |u00(x)|) < 1

0 < inf
x>0

(x2+� |R 00(x)|)  sup
x>0

(x2+� |R 00(x)|) < 1
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Admissible Strategies

Only interested in optimizing over a subset of all possible trading
strategies.

Denote by A the set of admissible strategies which satisfy 1� 4 in the
below definition.

Definition

A self-financing strategy {⇡
s

}
s2[t,T ] is admissible if

1 ⇡· is progressively measurable wrt {F
t

}
t2[0,T ].

2 ⇡· is locally square integrable.

3 X t,x,⇡
s

> 0 for all s 2 [t,T ].

4 If � > 1, E
TR
t

(X t,x,⇡
s

)�p(1 + ⇡2
s

) ds < 1 for every p � 0.
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HJB Equation

Goal: Approximate ⇡⇤ 2 A which satisfies

E [U
T

(X t,x ,⇡⇤

T

)|X t,x ,⇡⇤

t

= x ,Y
t

= y ]

= ess sup
⇡2A

E [U
T

(X t,x ,⇡
T

)|X t,x ,⇡
t

= x ,Y
t

= y ].

Value function:

J(t, x , y) := ess sup
⇡2A

E [U
T

(X t,x ,⇡
T

)|X t,x ,⇡
t

= x ,Y
t

= y ].

Dynamic programming gives the associated HJB PDE:

U
t

+max
⇡2A

⇢
1

2
�2(y)⇡2U

xx

+ ⇡(�(y)�(y)U
x

+ ⇢�(y)a(y)U
xy

)

�

+
1

2
a2(y)U

yy

+ b(y)U
y

= 0
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Marginal HJB Equation

The maximizer is clearly given by

⇡⇤ =
��(y)U

x

� ⇢a(y)U
xy

�(y)U
xx

.

Substituting ⇡⇤ into the HJB equation and di↵erentiating wrt x gives
the marginal HJB equation, which V (t, x , y) := U

x

(t, x , y) formally
solves:

V
t

+
1

2

✓
�(y)V + ⇢a(y)V

y

V
x

◆2

V
xx

� �(y)V + ⇢a(y)V
y

V
x

⇢a(y)V
xy

+
1

2
a2(y)V

yy

� �2(y)V + (b(y)� �(y)⇢a(y))V
y

= 0.

It has been established in Nadtochiy and Zariphopoulou (2013) that
the marginal HJB equation has a unique viscosity solution, henceforth
denoted V (t, x , y).
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Main Result (Approximating Viscosity Solution)

Theorem (Kumar-N.)

For some constant C > 0,

|V (t, x , y)� (u(x) + (T � t)�2(y)R(x))|  C (T � t)2x��

as (T � t) & 0.

Sketch of proof

Goal: Construct sub- and super-solutions
¯
V and V̄ , respectively, to the

marginal HJB equation so that

¯
V (t, x , y)  V (t, x , y)  V̄ (t, x , y).
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Constructing Sub- and Super-Solutions

Proof (cont.)

Assume
V (t, x , y) = V (0)(x , y) + (T � t)V (1)(x , y) + (T � t)2V (2)(x , y) + . . .
and substitute this into the marginal HJB equation. Grouping powers of
T � t, we deduce from the O(1) terms that

V (0)(x , y) = u(x)

for all (x , y) 2 (0,1)⇥ R. Similarly, from the O(T � t) terms, we find

V (1)(x , y) = �2(y)R(x)

for all (x , y) 2 (0,1)⇥ R.
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Constructing Sub- and Super-Solutions

Proof (cont.)

We now choose
¯
v (2)(x , y) and v̄ (2)(x , y) such that

¯
V (t, x , y) = u(x) + (T � t)�2(y)R(x) + (T � t)2

¯
v (2)(x , y)

and

V̄ (t, x , y) = u(x) + (T � t)�2(y)R(x) + (T � t)2v̄ (2)(x , y)

will be a sub-solution and super-solution, respectively. The O((T � t)2)
terms suggest the formulas v̄ (2)(x , y) = Cx�� and

¯
v (2)(x , y) := �v̄ (2)(x , y) for some constant C > 0, yielding, for small
enough (T � t), that

¯
V and V̄ sub- and super-solutions, respectively, of

the marginal HJB equation.
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Applying Comparison Principle

Proof (cont.)

Now we establish
¯
V (t, x , y)  V (t, x , y)  V̄ (t, x , y), which requires a

previously established comparison principle for a related PDE, established
in Nadtochiy and Zariphopoulou (2013).

Consider W (t, z , y) := log(V (t, ez , y)) + �z , where z = log(x). W
formally solves:

W
t

+ ✏
⇥
�1

2

(�+ a⇢W ✏
y

)2

W
z

� �

✓
W

zz

W
z

� �
� 1

◆
� 1

2
a2W

yy

+a⇢
�+ a⇢W

y

W
z

� �
W

zy

+
1

2
�2 + (�a⇢� b)W

y

+
1

2
a2(⇢2 � 1)(W

y

)2
⇤
= 0

In fact, Nadtochiy and Zariphopoulou (2013) showed that W is a viscosity
solution of this PDE.
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Applying Comparison Principle

Proof (cont.)

Choose (T � t) small enough (s.t.
¯
V , V̄ > 0) and define

¯
W (t, z , y) = log(

¯
V (t, ez , y)) + �z

and
W̄ (t, z , y) = log(V̄ (t, ez , y)) + �z .

Then
¯
W and W̄ are bounded classical sub- and super-solutions of the

above equation.
The comparison principle then implies

¯
W  W  W̄ , giving

¯
V  V  V̄ ,

i.e.,

u(x) + (T � t)�2(y)R(x)� c2x
��(T � t)2  V (t, x , y)

 u(x) + (T � t)�2(y)R(x) + c2x
��(T � t)2,

giving |V (t, x , y)� (u(x) + (T � t)�2(y)R(x))|  c2(T � t)2x�� , as
desired.
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Corollary (Approximating Value Function)

Corollary (Kumar-N.)

Let J(t, x , y) = ess sup
⇡2A

E [U
T

(X t,x ,⇡
T

)|X t,x ,⇡
t

= x ,Y
t

= y ]. For some

constant C > 0,
����J(t, x , y)�

✓
U
T

(x)� (T � t)
�2(y)

2

U 0
T

(x)2

U 00
T

(x)

◆����  C
(T � t)2

1� �
x1��

as (T � t) & 0.

Remark. Key ingredient in proof of corollary: J(t, x , y) can be
represented as the integral of the viscosity solution of the marginal
HJB equation, a result due to Nadtochiy and Zariphopoulou (2013).
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Approximating Portfolio

The next lemma asserts the sub-solution of the marginal HJB
equation generates a portfolio which is close to optimal; the case
� 2 (0, 1) is dealt with, while the case � 2 (1,1) is analogous.

Lemma (Kumar-N.)

Suppose
¯
U(t, x , y) := U

T

(0+) +
xR

0 ¯
V (t, r , y) dr and

¯
⇡(t, x , y) := ��(y)

�(y)
¯
U
x

¯
U
xx

� ⇢a(y)

�(y)
¯
U
xy

¯
U
xx

.

Then

|U(t, x , y)� E [U
T

(X
t,x ,

¯
⇡

T

)|F
t

]|  C
(T � t)2

1� �
x1��

as (T � t) & 0.
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Proof of Lemma

Proof

Applying Ito’s formula to
¯
U(s,X

t,x ,
¯
⇡

s

,Y
s

) gives

¯
U(T ,X

t,x ,
¯
⇡

T

,Y
T

)
| {z }

U

T

(X
t,x,

¯
⇡

T

)

�
¯
U(t,X

t,x ,
¯
⇡

t

,Y
t

)

=

TZ

t



¯
U
t

+ �
¯
⇡�

¯
U
x

+ b
¯
U
y

+
1

2
�2

¯
⇡2

¯
U
xx

+ �
¯
⇡a⇢

¯
U
xy

+
1

2
a2
¯
U
yy

�
ds

+

TZ

t

(�
¯
⇡
¯
U
x

+ a⇢
¯
U
y

) dW 1
s

+

TZ

t

a
p
1� ⇢2

¯
U
y

dW 2
s

.

Taking conditional expectation causes the martingale terms to drop out,
giving:
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Proof of Lemma

Proof (cont.)

E [
¯
U(T ,X

t,x ,
¯
⇡

T

,Y
T

)|F
t

]�
¯
U(t,X

t,x ,
¯
⇡

t

,Y
t

)

=

TZ

t

E



¯
U
t

+ �
¯
⇡�

¯
U
x

+ b
¯
U
y

+
1

2
�2

¯
⇡2

¯
U
xx

+ �
¯
⇡a⇢

¯
U
xy

+
1

2
a2
¯
U
yy

|F
t

�
ds

� 0

where the last inequality follows from
¯
U being a sub-solution of the HJB

equation. Thus,

E [U
T

(X
t,x ,

¯
⇡

T

)|F
t

] �
¯
U(t,X

t,x ,
¯
⇡

t

,Y
t

).

Thus, we have

¯
U(t,X

t,x ,
¯
⇡

t

,Y
t

)  E [U
T

(X
t,x ,

¯
⇡

T

)|F
t

]  ess sup
⇡2A

E [U
T

(X t,x ,⇡
T

)|F
t

] = J(t, x , y).
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Proof of Lemma

Proof (cont.)

By the previous theorem, 0  J(t, x , y)�
¯
U(t, x , y)  C (T�t)2

1�� x1�� , and
this together with the previous inequality give

|J(t, x , y)� E [U
T

(X
t,x ,

¯
⇡

T

)|F
t

]|  C
(T � t)2

1� �
x1�� ,

as desired.
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Closed Form Formula

Remark. We have found a formula for a portfolio
¯
⇡ under which the

expected utility of terminal wealth is close to the maximal expected
utility under the optimal portfolio.

I In practice,
¯
⇡ cannot be computed since it is generated by the

sub-solution

¯
U(t, x , y) = U

T

(0+) +

xZ

0

u(w) + (T � t)�2R(w)� Cw��(T � t)2 dw

the formula of which has an unspecified constant C .

Idea: Consider the portfolio ⇡̂ generated by

Û(t, x , y) = U
T

(0+) +

xZ

0

u(w) + (T � t)�2(y)R(w) dw .
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Closed Form Formula

Lemma (Kumar-N.)

If
¯
⇡ is generated by the sub-solution

¯
U and ⇡̂ is generated by Û, then

|
¯
⇡ � ⇡̂| = O((T � t)2)O(1 + x)

as (T � t) & 0.

Thus, for each fixed x , ⇡̂ approximates
¯
⇡ when the time to horizon is

small.

We next illustrate graphically the degree of approximation through an
example from Chacko and Viceira (2005).
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Example

We consider the model found in Chacko and Viceira (2005), in which
they estimated the parameters from real market data.

Recall: The risky asset’s price evolves as

dS
t

= µ(Y
t

)S
t

dt + �(Y
t

)S
t

dW 1
t

,

and the level of the stochastic factor evolves as

dY
t

= b(Y
t

) dt + a(Y
t

)(⇢ dW 1
t

+
p
1� ⇢2 dW 2

t

).

In this example, take µ(y) = µ, �(y) = 1p
y

, b(y) = m � y , and

a(y) = �
p
y , where µ,m,� are constants.

Set µ = 0.0811,m = 27.9345, � = 1.12, y = 27.9345, T = 2, � = 3,
and ⇢ = 0.5241.

Consider the utility function U
T

(x) = x

1��

1�� .
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Example

The value function is given by

U(t, x , y) = � 1

2x2
e

⇣
�

�+(1��)⇢2

⌘
(yA(t,T )+B(t,T )) ⇡ �0.485022

x2

where t = 1.5 in the approximation.

Similarly,

Û(t, x , y) = U
T

(x)� (T � t)
�2(27.9345)

2

U 0
T

(x)2

U 00
T

(x)
⇡ �0.484689

x2
.

The respective portfolios generated by the above functions are given
by

⇡
U

(x) ⇡ 0.750482x

and
⇡̂(x) ⇡ 0.748982x .
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Example

The value function plotted against the first order approximation and the
approximation with correction. t = 1.5,T = 2.

Hussein Nasralah (Wayne State University) (2017 Mathematical Finance, Probability, and PDEs Conference Rutgers University)Portfolio optimization near horizon May 19, 2017 25 / 31



Example

The value function plotted against the first order approximation and the
approximation with correction. t = 1.9,T = 2.
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Example

The optimal portfolio plotted against the approximating portfolio.
t = 1.5,T = 2.
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Example

The optimal portfolio plotted against the approximating portfolio.
t = 1.9,T = 2.
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Example

Remark. In the previous example, �(y) = µ�r

�(y) is unbounded, against
the initial assumptions of our work. That our results can still be
applied to this example to illustrate the approximation suggests that
we may be able to weaken some assumptions.
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Thank you!
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