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Let Z = (Zt, Pr,z) be a (time-inhomogeneous) right Markov process

A a nonnegative additive functional of Z (e.g., A(dt) = �(Zt) dt)

⌘ a strictly positive function on the state space of Z

p � 2

Finite-fuel control problem: minimize

E0,z

h

Z T

0
|ẋ(s)|p⌘(Zs) ds+

Z

[0,T ]
|x(s)|p A(ds)

i

over progressively measurable and absolutely continuous strategies x with

x(0) = x0 and x(T ) = 0
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In the form

minimize E
h

Z T

0
|ẋ(t)|2⌘t dt+ �

Z

[0,T ]
|x(t)|2 d[S]t

i

for a martingale S, this problem occurs in finance:

Tse, Forsyth, Kennedy & Windcli↵ (2011)

Forsyth, Kennedy, Tse & Windcli↵ (2012)

Almgren (2012) . . .
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describes the optimal liquidation of a large asset position

many other applications possible (optimal harvesting etc.)
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Heuristic solution

Assume A(du) = ↵(Zu) du and let

V (t, z, x0) := inf
x(t)=x0
x(T )=0

Et,z

h

Z T

t
|ẋ(u)|p⌘(Zu) du+

Z T

t
|x(u)|p↵(Zu) du

i

.

Optimal control suggest that V should satisfy the following HJB equation

@V

@t

(t, z, x0) + inf
⇠

n

⌘(z)|⇠|p + @V

@x0
(t, z, x0)⇠

o

+ ↵(z)|x0|p + LtV (t, z, x0) = 0

with singular terminal condition

V (T, z, x0) =

8

<

:

0 if x0 = 0,

+1 otherwise.
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We make the ansatz

V (t, z, x0) = |x0|pv(t, z)

for some function v. Plugging this ansatz into the HJB eqn, minimizing over ⇠,

and dividing by |x0|p, yields the PDE
8

<

:

vt + Ltv � 1
�⌘�

v

1+� + ↵ = 0,

v(T, z) = +1,

where

� =
1

p� 1
.

Moreover, the minimizing ⇠ in the HJB eqn is given by ⇠ = �xv

�
/⌘

� , which

suggestes that the optimal strategy x

⇤ is a solution of the ODE

ẋ(u) = �x(u)v(u, Zu)�

⌘(Zu)�
,

i.e.,

x

⇤(u) = x0 exp
⇣

Z u

t
�v(s, Zs)�

⌘(Zs)�
ds

⌘
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Dynkin (1992): for uniformly elliptic di↵usions on Rd, constant �, and � 2 (0, 1]

( () p � 2), singular PDEs of the form

vt + Ltv � �v

1+� + ↵ = 0,

v(T, z) = +1,

can be solved by means of Dawson–Watanabe superprocesses (and hence via

Monte Carlo techniques . . . )

Our first goal here: Establish direct connection between superprocesses and

our control problem without going through PDEs

In the course, we will need probabilistic counterparts of analytical concepts

without making reference to PDEs:

– verification argument

– Feynman–Kac formula

– parabolic maximum principle

– asymptotics of the blow-up behavior of solutions near singularity

– . . .
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Dawson–Watanabe superprocesses were introduced by Watanabe (1968)

They are measure-valued Markov processes motivated by describing the spatial

evolution of colonies of bacteria
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Branching Brownian motion

Xt =
X

�Zi

t
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X 1

N

�Zi

t

The superprocess with � = 1 is obtained by starting with individual N particles,

speeding up binary branching by a factor N , assigning mass 1
N to each particle,

and then sending N to infinity. In this picture, N = 40 and the population

became extinct at time 2.75 in its 148th generation.
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The superprocess X = (Xt,Pr,µ) is a Markov process that can be characterized

by its Laplace functionals:

Er,µ[ e
�hf,X

T

i ] = e

�hv(r,·),µi
, f � 0 and bounded,

where hf, µi is shorthand for
R

f dµ and v is the unique positive mild solution of

the semilinear PDE

vt + Ltv � �v

1+� = 0

v(T, z) = f(z)

That is

v(r, z) = Er,z[ f(ZT ) ]� Er,z

h

�

Z T

r
v(t, Zt)

1+�
dt

i

Remark: Note that the superprocess is an a�ne process
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Example: Taking f equal to a constant k > 0, solves

v(r, z) = k � Er,z

h

�

Z T

r
v(t, Zt)

1+�
dt

i

is solved by

vk(r, z) =
1

(k�� + ��(T � t))1/�

Sending k to infinity yields

� logPr,�
z

[XT = 0 ] = � lim
k"1

logEr,�
z

[ e�kh1,X
T

i ]

= lim
k"1

vk(r, z)

=
1

(��(T � r))1/�

and this function solves

vt + Ltv � �v

1+� = 0

v(T, z) = 1
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The characterization of Laplace functionals extends to nonnegative additive

functionals A of Z of the form

A[r, t] =
X

rt
i

t

fi(Zt
i

)

by means of the J-functional

JA =
X

i

hfi, Xt
i

i

and to suitable limits thereof (in the sense of Mokobodzki’s medial limits)

Er,µ[ e
�J

A ] = e

�hv(r,·),µi

where v(r, z) solves

v(r, z) = Er,z[A[r, T ] ]� �Er,z

h

Z T

r
v(s, Zs)

1+�
ds

i

, 0  r  T.
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Remark: In the financial context with a martingale St = �(Zt), the additive

functional A(dt) = d[S]t may not be of this form:

A[r, t] = lim
mesh!0

X

rt
i�1, t

i

t

�

�(Zt
i

)� �(Zt
i�1)

�2

— unless we can take Z as a path process, e.g.,

Zt = (Ss^t)s�0

In this case, A(dt) = d[S]t can be approximated by additive functionals

An[r, t] =
X

rt
i�1, t

i

t

�

Zt
i

(ti)� Zt
i

(ti�1)
�2

| {z }

=f
i

(Z
t

i

) and =(S
t

i

�S
t

i�1 )
2

The corresponding superprocess is the historical superprocess (Dawson & Perkins

(1991), Dynkin (1991))

But in this situation there is no hope to get smoothness of the solutions of the

corresponding log–Laplace equations ; we will work only with mild solutions

here
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Theorem 1 (Case ⌘ = 1). For p � 2 let q be such that

1
p + 1

q = 1 and take A

such that Er,z[A[r, T ]q ] < 1 for all r, z. Let JA be the corresponding

J-functional of the superprocess with parameters Z, � := p� 1, and � := 1
� , and

define the function

v1(r, z) = � logEr,�
z

[ e�J
A

{X
T

=0} ]

Then the minimal costs are

inf
x(0)=x0
x(T )=0

E0,z

h

Z T

0
|ẋ(s)|p ds+

Z

[0,T ]
|x(s)|p A(ds)

i

= |x0|pv1(0, z)

and unique optimal strategy is

x

⇤(t) := x0 exp
⇣

�
Z t

0
v1(s, Zs)

�
ds

⌘
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Some comments on the proof:

First step: probabilistic verification argument without smoothness

Entirely based on mild solutions.

Second step: The most di�cult part of the proof is to show that

x

⇤(t) := x0 exp
⇣

�
Z t

0
v1(s, Zs)

�
ds

⌘

is an admissible strategy, i.e., x⇤(t) ! 0 as t " T and that x⇤ has finite cost, so

that the preceding argument can be applied to x := x

⇤

• For x⇤(t) ! 0 as t " T we must show that
R t
0 v1(s, Zs)� ds diverges and

hence need a lower bound on v1 close to the singularity

• To show that x⇤ has finite cost we must show that

E0,z

h

Z T

0
|ẋ⇤(t)|p dt

i

= E0,z

h

Z T

0
|v1(t, Zt)

�
x

⇤(t)|p dt
i

< 1

and therefore need an upper bound on v1 close to the singularity

Based on auxiliary results that are of independent interest.
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The case of nonconstant ⌘(·)
Need a superprocess with Laplace functionals

� logEr,�
z

[ e�J
A ] = v(r, ·)

where v solves

v(r, z) = Er,z

h

A[r, T ]�
Z t

r
v(s, Zs)

1+� 1

�⌘(Zs)�
ds

i

Such superprocesses were constructed by means of an h-transform technique that

was introduced independently by Engländer and Pinsky (1999) and A.S. (1999).
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Theorem 2. Suppose that ⌘ is as above. For p 2 [2,1) let q be such that

1
p + 1

q = 1 and take A such that

(1)

Z T

0
E0,z

h

⌘(Zt)
1+q

A[t, T ]q
i

dt < 1

For � := 1
p�1 let moreover X = (Xt,Pr,µ) be the superprocess constructed above

and define

(2) v1(r, y) := � logEr,�
y

[ e�J
A

{X
T

=0} ]

and

(3) x

⇤(t) := x0 exp
⇣

�
Z t

0

v1(s, Zs)�

⌘(Zs)�
ds

⌘

Then x

⇤
is an admissible strategy and the unique minimizer of the cost

functional. Moreover, the minimal costs are given by

E0,z

h

Z T

0
|ẋ⇤(s)|p⌘(Zs) ds+

Z

[0,T ]
|x⇤(s)|p A(ds)

i

= |x0|pv1(0, z)
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Catalytic superprocesses and target zone models

29
A
ug
11

16
Ja
n
12

4
Ju
n
12

22
O
ct
12

1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

Swiss franc’s one-sided target zone

An investor wising to buy EUR for CHF would do so only when the exchange

rate is at its lower bound of 1.20 EUR/CHF
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To model a target zone, let S denote the price process in the Bachelier or

Black–Scholes models, reflected at a lower Barrier c. The requirement of trading

only at the lowest possible price means that trades only occur when St = c. An

argument based on a discrete-time approximation of trading strategies shows

that strategies must be of the form

x

⇠(t) = x0 +

Z t

0
⇠s L(ds),

where L is the local time of S at the barrier c and ⇠ is a progressive process

describing the trading rate. Moreover, the costs from temporary price impact are

of the form
Z T

0
|⇠t|p L(dt)

Note that it is not possible here to guarantee the liquidation constraint x⇠(T ) = 0
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We thus aim to minimize

Ez



Z T

0
|⇠t|p L(dt) +

Z T

0
�(St)|x⇠(t)|p dt+ %(ST )|x⇠(T )|p

�

(4)

where � : R ! R+ is bounded and measurable and % : R ! R+ is a bounded and

continuous penalty function

20



This problem is solved by means of a catalytic superprocess:

Proposition 1. (Dawson & Fleischmann 1994, Dynkin 1995)

For � 2 (0, 1], there exists a measure-valued Markov process (Xt,Pµ) such that

for each T > 0 and bounded measurable functions f, g � 0,

Eµ

h

exp
⇣

�
Z T

0
hg,Xti dt� hf,XT i

⌘ i

= e

�hv(T,·),µi
,(5)

where v is the unique nonnegative solution of

v(t, z) = Ez

h

f(St) +

Z t

0
g(Ss) ds

i

� Ez

h 1

�

Z t

0
v(t� s, Ss)

1+�
L(ds)

i

.(6)
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Theorem 3. Let

u(t, z) := � logE�
z

h

exp
⇣

�
Z t

0
h�, Xsi ds� h%, Xti

⌘ i

(7)

and

⇠

⇤
t := �x0 exp

⇣

�
Z t

0
u(T � s, Ss)

�
dLs

⌘

u(T � t, St)
�(8)

so that

x

⇠⇤(t) = x0 exp
⇣

�
Z t

0
u(T � s, Ss)

�
dLs

⌘

.

Then ⇠

⇤
is the dLt ⌦ Pz-a.e. unique strategy in X minimizing the cost

functional (4).
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Laplace functionals of historical superprocesses as viscosity

solutions to path-dependent PDEs (PPDEs)

We have seen that mild solutions of certain semilinear PDEs yield the value

functions of certain control problems. On the other hand, value functions of

control problems are usually associated with viscosity solutions.

So are mild solutions

v(r, z) = Er,z[ f(ZT ) ]� Er,z

h

�

Z T

r
v(t, Zt)

1+�
dt

i

also viscosity solutions?

Can be answered a�rmatively if Z is a nice finite-dimensional di↵usion process.

But what about the infinite-dimensional case, in which Z is, e.g, the path process

of a Brownian motion B,

Zt = (Bs^t)t�0,

as needed for historical superprocesses?
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A�rmative answer given by Kalinin and A.S. (2016) for a slightly stronger

version of the notion of viscosity solutions of PPDEs than the one given by

Ekren, Keller, Touzi, and Zhang (2014).

• Establishes Laplace functionals of historical superdi↵usions as natural

examples of PPDEs

• Existence of mild (and hence viscosity) solutions can be constructed for

larger class of nonlinearities than with BSDE techniques (e.g., v 7! v

p for any

p � 1)
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