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Motivation and overview

I Existing literature:
either
- Prices are fixed, optimal contract is found
or
- Contract is fixed, prices are found in equilibrium

I An exception: Bu↵a-Vayanos-Woolley 2014 [BVW 14]

I However, [BVW 14] still severely restrict the set of admissible
contracts

I We allow more general contracts and explore equilibrium implications
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Literature

I Fixed contracts:

Brennan (1993)
Cuoco-Kaniel (2011)
He-Krishnamurthy (2011)
Lioui and Poncet (2013)
Basak-Pavlova (2013)
—————————————–

I Fixed prices:

Sung (1995)
Ou-Yang (2003)
Cadenillas, Cvitanić and Zapatero (2007)
Leung (2014)
Cvitanić, Possamai and Touzi, CPT (2016, 2017)
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Bu↵a-Vayanos-Woolley 2014 [BVW 14]

I Optimal contract is obtained within the class

compensation rate = �⇥ portfolio return� �⇥ index return.

Our questions:

1. What is the optimal contract when investors are allowed to optimize
in a larger class of contracts?
(Linear contract is optimal in [Holmstrom-Milgrom 1987])

2. What are the equilibrium properties?
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As shown in CPT (2016, 2017) ...

I The optimal contract depends on the output, its quadratic
variation, the contractible sources of risk (if any), and the
cross-variations between the output and the risk sources.
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Our results

I Computing the optimal contract and equilibrium prices

I Optimal contract rewards Agent for taking specific risks and not
only the systematic risk

I Stocks in large supply have high risk premia, while stocks in low
supply have low risk premia

I Equilibrium asset prices distorted to a lesser extent:

Second order sensitivity to agency frictions compared to the
first order sensitivity in [BVW 14].
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Assets
Riskless asset has an exogenous constant risk-free rate r .

Prices of N risky assets will be determined in equilibrium.

Dividend of asset i is given by

Dit = aipt + eit ,

where p and ei follow Ornstein-Uhlenbeck processes

dpt = p(p̄ � pt)dt + �pdB
p
t ,

deit = e
i (ēi � eit)dt + �eidB

e
it .

Vector of asset excess returns per share

dRt = Dtdt + dSt � rStdt.

The excess return of index
It = ⌘0Rt ,

where ⌘ = (⌘1, . . . , ⌘N)0 are the numbers of shares of assets in the
market.
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Available shares

Number of shares available to trade:
✓ = (✓1, . . . , ✓N)0

(Some assets may be held by buy-and-hold investors.)

We assume that ⌘ and ✓ are not linearly dependent. (Manager provides
value to Investor.)
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Portfolio manager

Portfolio manager’s wealth process follows

dW̄t = rW̄tdt + (b mt � c̄t)dt + dFt ,

I c̄t is Manager’s consumption rate

I Ft is the cumulative compensation paid by Investor

I b mt is the private benefit from his shirking action mt , b 2 [0, 1],
[DeMarzo-Sannikov 2006]

I No private investment

I Chooses portfolio Y for Investor
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Investor

The reported portfolio value process:

G =

Z ·

0
(Y 0

s dRs �msds).

Investor observes only G and I

Her wealth process follows

dWt = rWtdt + dGt + ytdIt � ctdt � dFt ,

I Yt is the vector of the numbers of shares chosen by Manager

I yt is the number of shares of index chosen by Investor

I ct is Investor’s consumption rate

I mt is Manager’s shirking action, assumed to be nonnegative
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Manager’s optimization problem

Manager maximizes utility over intertemporal consumption:

V̄ = max
c̄,m,Y

E
h

Z 1

0
e��̄tuA(c̄t)dt

i

,

I �̄ is Manager’s discounting rate

I uA(c̄) = � 1
⇢̄e

�⇢̄c̄

If Manager is not employed by Investor, he maximizes

V̄ u = max
c̄u,Y u

E
h

Z 1

0
e��̄tuA(c̄

u
t )dt

i

subject to budget constraint

dW̄t = rW̄t + Y u
t dRt � c̄ut dt.

Manager takes the contact if V̄ � V̄ u.
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Investor’s maximization problem

Investor maximizes utility over intertemporal consumption:

V = max
c,F ,y

E
h

Z 1

0
e��tuP(ct)dt

i

,

I � is Investor’s discounting rate

I uP(c) = � 1
⇢e

�⇢c

If Investor does not hire Manager, she maximizes

V u = max
cu,yu

E
h

Z 1

0
e��tuP(c

u
t )dt

i

subject to budget constraint

dWt = rWt + yu
t dIt � cut dt.

Investor hires Manager if V � V u.
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Equilibrium

A price process S , a contract F in a class of contracts F, and an index
investment y , form an equilibrium if

1. Given S , (F ,F), and y , Manager takes the contract, and
Y = ✓ � y ⌘ solves Manager’s optimization problem.

2. Given S , Investor hires Manager, and (F , y) solves Investor’s
optimization problem, and F is the optimal contract in F.

14 / 44



Outline

Introduction

Model [BVW 14]

Main results

Technicalities

Other examples for optimal contracting

15 / 44



Asset prices

There exists an equilibrium with asset prices Sit = a0i + apipt + aeieit
(assuming ✓ and ⌘ are not linearly dependent.)

Setting ap = (ap1, . . . , apN)0 and ae = diag{ae1, . . . , aeN}, we have

api =
ai

r + p
aei =

1

r + e
i

, i = 1, . . . ,N,

(assuming the matrix ⌃R = ap�2
pa

0
p + a0e�

2
Eae is invertible.)

Notation:

Var⌘ = ⌘0⌃R⌘, Covar✓,⌘ = ⌘0⌃R✓,

CAPM beta of the fund portfolio: �✓ =
Covar✓,⌘

Var⌘
.
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Asset Returns

Asset excess returns are

µ� r = r
⇢⇢̄

⇢+ ⇢̄
⌃R✓ + rDb⌃R(✓ � �✓⌘),

where

Db = (⇢+ ⇢̄)
⇣

b � ⇢

⇢+ ⇢̄

⌘2

+
.

I When b 2 [0, ⇢
⇢+⇢̄ ], the first best is obtained.

I When ✓i
⌘i

> �✓, risk premium of asset i increases with b.

When ✓i
⌘i

< �✓, risk premium of asset i decreases with b.
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Asset prices/returns
In [BVW 14], Db is replaced by

DBVW
b = ⇢̄

⇣

b � ⇢

⇢+ ⇢̄

⌘

+
.

Note that
Db < DBVW

b , for any b 2 (0, 1).
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Figure: Solid lines: our result; Dashed lines: [BVW 14].
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Index and portfolio returns
Excess return of the index

⌘0(µ� r) = r
⇢⇢̄

⇢+ ⇢̄
Covar✓,⌘.

Excess return of Manager’s portfolio

✓0(µ� r) = r
⇢⇢̄

⇢+ ⇢̄
Var✓ + rDb

⇣

Var✓ � (Covar✓,⌘)2

Var⌘

⌘

.
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Optimal contract

dFt = Cdt + ⇢
⇢+⇢̄dGt + ⇠(dGt � �✓dIt) +

r
2⇣ dhG � �✓I ,G ✓ � �✓I it

I Optimality in a large class of contracts
I

Conjecture: It is optimal in general.

I ⇠ = (b � ⇢
⇢+⇢̄ )+, ⇣ = (⇢+ ⇢̄)(b + ⇠)(1� b � ⇠)⇠

I When b  ⇢
⇢+⇢̄ , ⇠ = ⇣ = 0, only the first two terms show up. The

return of the fund is shared between investor and portfolio manager
with ratio ⇢

⇢+⇢̄ .

BVW 14 contract corresponds to the two terms in the middle.

I The quadratic variation term is new.

I hG � �✓I ,G � �✓I i can be thought as a tracking gap.

Tracking gap is rewarded to motivate Manager to take the specific
risk of individual stocks, and not only the systematic risk of the
index.
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Optimal contract
When b � ⇢

⇢+⇢̄ ,

⇠ is increasing in b, so as to make Manager to not employ the shirking action.

Dependence of ⇣ on b:
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New contract improves Investor’s value
For the asset price in [BVW 14], Investor’s value is improved by using the
new contract.
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Figure: Solid line: our contract, Dashed line: [BVW 14]
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Admissible contracts: motivation
For any Manager’s admissible strategy ⌅ = (c̄ ,Y ,m), consider

⌅t = {⌅̂ admissible | ⌅̂s = ⌅s , s 2 [0, t]}.

Define Manager’s continuation value process V̄(⌅) as

V̄t(⌅) = ess sup⌅tEt

h

Z 1

t

e��̄(s�t)uA(c̄s)ds
i

, t � 0.

(i) @W̄t
V̄t(⌅) = �r ⇢̄V̄t(⌅);

(ii) Transversality condition: limt!1 E
⇥

e��̄t V̄t(⌅)
⇤

= 0;

(iii) Martingale principle:

Ṽt(⌅) = e��̄t V̄t(⌅) +

Z t

0
e��̄suA(c̄s)ds,

is a supermartingale for arbitrary admissible strategy ⌅, and is a
martingale for the optimal strategy ⌅⇤.
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Admissible contracts: definition
(Motivated by CPT (2016), (2017))

A contract F is admissible if

1. there exists a constant V̄0,

2. for any Agent’s strategy there exist FG ,I -adapted processes
Z ,U, �G , �I , �GI such that the process V̄ (⌅), defined via

dV̄t(⌅) =Xt

h

(bmt � c̄t)dt + ZtdGt + UtdIt

+ 1
2�

G
t dhG ,G it + 1

2�
I
tdhI , I it + �GIt dhG , I it

i

+ �̄V̄t(⌅)dt � Htdt, V̄0(⌅) = V̄0,

where Xt = �r ⇢̄V̄t(⌅) and H is the Hamiltonian

H = sup
c̄,m�0,Y

n

uA(c̄) + X
h

bm � c̄ � Zm + ZY 0(µ� r) + U⌘0(µ� r)

+ 1
2�

GY 0⌃RY + 1
2�

I⌘0⌃R⌘ + �GIY 0⌃R⌘
io

,

satisfies limt!1 E
⇥

e��̄t V̄t(⌅)
⇤

= 0.
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Manager’s optimal strategy

Lemma
Given an admissible contract with

X > 0, Z � b, and �G < 0,

the Manager’s optimal strategy is the one maximizing the Hamiltonian,

c̄⇤ = (u0A)
�1(X ), m⇤ = 0,

Y ⇤ + y⌘ = � Z

�G
⌃�1

R (µ� r)� �GI

�G
⌘,

and we have
V̄ (⌅) = V̂(⌅).
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Do we lose on generality?

[CPT 2016, 2016] considered the finite horizon case,

dV̄t =Xt

h

bmtdt + ZtdGt + UtdIt

+
1

2
�Gt dhG ,G it + 1

2�
I
tdhI , I it + �GIt hG , I it

i

� Htdt.

V̄T = CT is the lump-sum compensation paid.

They showed the set of C that can be represented as V̄T is dense in the
set of all (reasonable) contracts. Hence, there is no loss of generality in
their framework.

Their proof is based on the 2BSDE theory, e.g., [Soner-Touzi-Zhang
2011,12,13].

Conjecture: A similar result holds for the infinite horizon case. (Work in
progress by Lin, Ren, and Touzi.)
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Representation of admissible contracts

Lemma
An admissible contract F can be represented as

dFt =ZtdGt + UtdIt +
1
2�

G
t dhG ,G it + 1

2�
I
t dhI , I it + �GIt dhG , I it

+ 1
2 r ⇢̄ dhZ · G + U · I ,Z · G + U · I it �

⇣

�̄
r ⇢̄ + H̄t

⌘

dt,

where Z · G =
R ·
0 ZsdGs and

H̄t =
1
⇢̄ log(�r ⇢̄V̄0)� 1

⇢̄ + (ZtY
⇤
t + Ut⌘)

0(µt � r)

+ 1
2�

G
t (Y ⇤

t )
0⌃RY

⇤
t + 1

2�
I
t ⌘

0⌃R⌘ + �GIt (Y ⇤
t )

0⌃R⌘.

In particular, F is adapted to FG ,I (as it should be).
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Investor’s problem

1. Guess Investor’s value function

V (w) = Ke�r⇢w ,

2. Treat Z ,U, �G , �GI as Investor’s control variables.

3. Work the with HJB equation satisfied by V .
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Conclusion

I We find an asset pricing equilibrium with the contract optimal in a
large class. (Maybe the largest.)

I Price/return distortion less sensitive to agency frictions.

I The contract based on the ”tracking gap” and its quadratic
variation.

Future work:

I Square root, CIR dividend processes
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Example: delegated portfolio management

The portfolio value process Xt follows the dynamics

dX =
v1
S1

dS1 +
v2
S2

dS2

where
dSi,t/Si,t = bidt + dB i

t ,

where B i are independent Brownian motions and bi are constants. We
have then

dXt = [v1,tb1 + v2,tb2] dt + v1,tdB
1
t + v2,tdB

2
t .

The principal hires an agent to manage the values of vt = (v1,t , v2,t).
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Expected utility

The agent is paid at the final time T in the amount CT , and draws
expected utility

�E
h

e�RA(CT�
R T
0 c(v1(s),v2(s))ds)

i

where the agent’s running cost is of the form

c(v1, v2) =
1

2
�1(v1 � ↵1)

2 +
1

2
�2(v2 � ↵2)

2

The principal’s expected utility is

�E
h

e�RP (XT�CT )
i
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First best

Given a “bargaining-power” parameter ⇢ > 0, the first-best (risk-sharing)
problem is

max
v

max
CT

E

"

UP(XT � CT ) + ⇢UA(CT �
Z T

0
c(v1(s), v2(s))ds)

#

The first order condition for CT is then

U 0
P(XT � CT )

U 0
A(CT � K v

T )
= ⇢

With CARA utilities, we obtain

CT =
1

RA + RP

✓

RPXT + RAK
v
T + log

✓

⇢RA

RP

◆◆
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Second best

We consider linear contracts based on the path of the observable
portfolio value X , the observable quadratic variation of X , and, possibly,
on S1 via B1, and the co-variation of X and B1. Indicator 1O indicates
whether S1 is observed.

CT = C0+

Z T

0

⇥

ZX
s dXs + Y X

s dhX is + 1O

�

Z 1
s dB

1
s + Y 1

s dhX ,B1is
�

+ Hsds
⇤

,

(1)
for some constant C0, and some adapted processes ZX ,Z 1,Y X ,Y 1 and
H. Transformation of variables:

Y X =
1

2

�

�X + RA(Z
X )2

�

,

Y 1 = �1 + RAZ
XZ 1,

H = �G +
1

2
RA(Z

1)2.
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SIMPLE CRUCIAL OBSERVATION: CT = agent’s value function at T .
We will argue then that the natural choice for Gt is
Gt := G (ZX

t ,Z 1
t , �

X
t , �

1
t ), where

G (ZX ,Z 1, �X , �1) := sup
v1,v2

g(v1, v2,Z
X ,Z 1, �X , �1)

:= sup
v1,v2

⇢

1

2
�X (v2

1 + v2
2 ) + ZXb · v � c(v1, v2) + 1O�

1v1

�

.

The agent is maximizing

�EP
t

h

e�RA

R T
0 [gs�Gs ]ds

i

 1,

Any pair (v⇤
1 (s), v

⇤
2 (s)) that maximizes gs := g(ZX

s ,Z 1
s , �

X
s , �

1
s ) is

optimal.
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Contractible S1: first best is attained
Optimal (v⇤

1 , v
⇤
2 ) is obtained by maximizing

g = �1

2
�1(v1 � ↵1)

2 � 1

2
�2(v2 � ↵2)

2

+ZXb · v + �1v1 +
1

2
�Xkvk2 + Z 1b1 + (Z 1)2 + 2Z 1ZX v1.

Assume, for example, that b2 6= 0, �2  �1. Suppose the principal sets

�Xt ⌘ �2,

ZX
t ⌘ �↵2�2/b2,

�1t = �↵1�1 � ZX
t b1 + (�1 � �2)v

FB
1 ,

Z1 ⌘ 0.

Then,

g = (�2 � �1)



1

2
v2
1 � v1v

FB
1

�

+ const.

Agent is indi↵erent with respect to v2, and he chooses v⇤
1 = vFB

1 .
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Non-contractible S1

Optimal (v⇤
1 , v

⇤
2 ) is obtained by maximizing

g(v1, v2) = �1

2
�1(v1 � ↵1)

2 � 1

2
�2(v2 � ↵2)

2 + ZXb · v +
1

2
�Xkvk2.

Assume, for example, �2  �1. If �X < �2  �1, the optimal positions are

v⇤
i =

ZXbi + ↵i�i

�i � �X
.

The principal maximizes, over Z and �,

b · v⇤(Z , �)� 1

2
[RAZ

2 + RP(1� Z )2]kv⇤k2 � c(v⇤(Z , �)).
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Main messages from numerics

- 1. The percentage loss in the principal’s second best utility certainty
equivalent relative to the first best, when varying initial risk expoosure
↵2, can be significant for extreme values of ↵2. That is, when the initial
risk exposure is far from desirable, the moral hazard cost of providing
incentives to the agent to modify the exposure is high.
- 2. The loss in the principal’s second best certainty equivalent relative to
the one she would obtain if o↵ering the contract that is optimal among
those that are linear in the output, but do not depend on its quadratic
variation, can also be large.
- 3. The principal uses quadratic variation as an incentive tool: for low
values of the initial risk exposure she wants to increase the risk exposure
by rewarding higher variation, and for its high values she wants to
decrease it by penalizing high variation.
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Example: Quadratic cost, drift e↵ort; C., Wan and

Zhang (2009)

dXt = �↵tdt + �dB↵
t

Agent is maximizing E [UA(CT )� c
2

R T

0 ↵2
t dt], while Principal is

maximizing E [UP(XT � CT )]
Proposition. Assuming that Principal’s value function V P(t, x , y) is in
class C 2,3,3, we have, for some constant L,

V P
y (t,Xt ,Yt) = �1

c
V P(t,Xt ,Yt)� L

In particular, the optimal contract CT satisfies

Ũ 0
P(XT � CT )

U 0
A(CT )

=
1

c
UP(XT � CT ) + L (2)

40 / 44



Proof:

The HJB equation for Principal’s value function v(t, x , y) = V P(t, x , y)
is
8

<

:

@tv + sup
z

⇢

1

c
�2zvx +

1

2c
�2z2vy +

1

2
�2

�

v
xx

+ z2v
yy

�

+ �2zv
xy

�

= 0,

v(T , x, y) = UP(x� U�1
A (y)).

Optimizing over z gives

z⇤ = �vx + cvxy
vy + cvyy

We have that v(t,Xt ,Yt) is a martingale under the optimal measure P ,
satisfying

dv = �(vx + z⇤vy )dW

Then, compare to dvy , with boundary condition

vy (T , x, y) = �
U 0
P(x� U�1

A (y))

U 0
A(U

�1
A (y))
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Risk-neutral principal and logarithmic agent

Suppose c = 1 ,

UP(CT ) = XT � CT , UA(CT ) = logCT .

We also assume
dXt = �↵tXtdt + �XtdB

↵
t .

The optimal contract payo↵ CT satisfies

CT =
1

2
XT + const.
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Example: Risk-Sharing in complete markets

Cadenillas, Cvitanić and Zapatero (2007)

Assume a complete market with no cost on choosing the ”portfolio
strategy”. Using these methods we recover the result from the above
paper that the optimal payo↵ F (XT ) is given by solving the ODE

U 0
P(x � F (x))

U 0
A(F (x))

= F 0(x)

This gives a linear contract for CARA utilities.
Also for CRRA utilities, but only with the same risk aversions.

43 / 44



Thank you for your attention!
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Figure 1:   Percentage loss in principal's certainty equivalent relative to first best, as 
function of αଶ. 
Parameter values: ܴ஺=10, ܴ௉=0.58, αଵ=0.5, βଵ=0.4, βଶ=1, ܾ1=0.4, ܾଶ=1, ܤ଴=0.
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Figure 2:   Percentage loss in principal's certainty equivalent when not using quadratic 
variation, as function of αଶ. 
Parameter values: ܴ஺=10, ܴ௉=0.58, αଵ=0.5, βଵ=0.4, βଶ=1, ܾଵ=0.4, ܾଶ=1, ܤ଴=0.
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Figure 3:  Optimal contract's sensitivity to quadratic variation, as function of αଶ. 
Parameter values: ܴ஺=10, ܴ௉=0.58, αଵ=0.5, βଵ=0.4, βଶ=1, ܾଵ=0.4, ܾଶ=1, ܤ଴=0.
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