Fluctuations of Rank Based Stochastic Differential Equations

Praveen Kolli

joint work with Misha Shkolnikov

May 18, 2017

Praveen(CMU), Misha(Princeton University)

Rutgers University

May 18, 2017 1 / 19

Overview

Introduction

- 2 Law of Large Numbers
- (3) Heuristic derivation of the Porous Medium Equation
- 4 Central Limit Theorem

Proof of CLT 5

-

→ < ∃ >

Rank Based Stochastic Differential Equations

Consider the following n interacting diffusions(particles) on the real line where the i^{th} diffusion evolves according to the SDE

$$dX_i(t) = b(F_n(t, X_i(t))) dt + \sigma(F_n(t, X_i(t))) dW_i(t)$$
(1)

Here b, σ are lipschitz continuous functions from [0,1] to \mathbb{R} , $F_n(t,x)$ is $\sum_{i=1}^{n} \mathbb{I}(X_i(t) \le x)$ the empirical cdf $\xrightarrow{i=1}^{n} \mathbb{I}(X_i(t) \le x)$. We observe that the drift and volatility terms of the i^{th} particle depends on its rank. If Y_1, Y_2 and Y_3 are 3 real numbers with $Y_3 < Y_1 < Y_2$, then Rank $(Y_1)=2$, Rank $(Y_2)=3$ and Rank $(Y_3)=1$. This implies $b(F_n(t, X_i(t))) = b(\frac{\operatorname{rank}(X_i(t))}{n})$ and we have a similar term for the volatility coefficient.

▲ロト ▲興ト ▲ヨト ▲ヨト ニヨー わえぐ

Law of Large numbers

Theorem (Shkolnikov '12, Jourdain, Reygner '13)

For the aforementioned interaction diffusions with b,σ continuous and $X_i(0), i = 1, 2, ..., n$ IID drawn from λ , then $F_n(t,x) \rightarrow F(t,x)$ where F(t,x) is a non random CDF and satisfies the following porous medium PDE with the initial condition $F(0,x) = F_{\lambda}(x)$

$$F_t(t,x) = -\left(b(F(t,x))F_x(t,x)\right) + \left(\frac{\sigma^2(F(t,x))}{2}F_x(t,x)\right)_x \quad (2)$$

・ロト ・ 同ト ・ ヨト ・ ヨ

Derivation of PME

For any test function $f(x) \in C^\infty_c$, we have

$$\int_{\mathbb{R}} f(x) d(F_{n}(t,x) - F_{n}(0,x)) = \frac{\sum_{i=1}^{n} \left(f(X_{i}(t)) - f(X_{i}(0)) \right)}{n}$$
$$= \int_{0}^{t} \int_{\mathbb{R}} \left(f'(x) b(F_{n}(s,x)) + f''(x) \frac{\sigma^{2}(F_{n}(s,x))}{2} \right) dF_{n}(s,x) ds \quad (3)$$
$$+ \sum_{i=1}^{n} \int_{0}^{t} \frac{f'(X_{i}(s)) \sigma(F_{n}(s,X_{i}(s))) dW_{i}(s)}{n}$$

Now as $n \to \infty$, we expect $F_n(t, x)$ to converge to F(t, x) and we also expect the integrals to converge appropriately.

Upon letting $n \to \infty$, we obtain

$$\int_{\mathbb{R}} f(x) \mathrm{d} \left(F(t,x) - F(0,x) \right) =$$

$$= \int_{0}^{t} \int_{\mathbb{R}} \left(f'(x) b(F(s,x)) + f''(x) \frac{\sigma^{2}(F(s,x))}{2} \right) \mathrm{d} F(s,x) \mathrm{d} s$$
(4)

Differentiating wrt t and using the fact that the limiting distribution F(t, x) has a density $F_x(t, x)$, we get

$$\int_{\mathbb{R}} f(x)F_{xt}(t,x)dx =$$

$$= \int_{\mathbb{R}} \left(f'(x)b(F(t,x)) + f''(x)\frac{\sigma^2(F(t,x))}{2} \right)F_x(t,x)dx$$
(5)

Integration by parts gives us the Porous Medium PDE.

Praveen(CMU), Misha(Princeton University)

Rutgers University

What happened to the Martingale Term ? The Martingale term $M_t^n = \sum_{i=1}^n \int_0^t \frac{f'(X_i(s))\sigma(F_n(s,X_i(s)))dW_i(s)}{n}$ vanishes as $n \to \infty$. To see this, look at $\langle M^n \rangle_t$

$$\langle M^n \rangle_t = \int_0^t \int_{\mathbb{R}} \frac{\left(f'(x)\sigma(F_n(s,x))\right)^2}{n} dF_n(s,x) ds \to 0 \text{ as } n \to \infty$$
 (6)

We have $F_n(t,x) \to F(t,x)$, the next natural question to ask is, What can we say about the fluctuations $G_n(t,x) = \sqrt{n}(F_n(t,x) - F(t,x))$?

イロト イポト イヨト イヨト 二日

Theorem (Kolli, Shkolnikov '16)

 $G_n(t,x) \rightarrow G(t,x)$, where G(t,x) is the mild solution of the SPDE with the initial condition $G(0,x) = \beta(F_\lambda(x))$

$$G_{t}(t,x) = -\left(b(F(t,x))G(t,x)\right)_{x} + \frac{\left(\sigma^{2}(F(t,x))G(t,x)\right)_{xx}}{2} + \sigma(F(t,x))\sqrt{F_{x}(t,x)}\dot{W}(t,x)$$

$$(7)$$

where W is space time white noise and β is an Independent standard Brownian Bridge.

Solution of the SPDE

,We can solve the SPDE explicitly and the solution is as follows

$$G(t,x) = \int_{\mathbb{R}} p(0, y, t, x) G(0, y) dy + \int_{0}^{t} \int_{\mathbb{R}} \sigma(F(s, y)) \sqrt{F_{x}(s, y)} p(s, y, t, x) dW(s, y)$$
(8)

where p(s, y, t, x) is the transition density of the diffusion

$$\mathrm{d}\bar{X}_{i}(t) = b\big(F(t,\bar{X}_{i}(t))\big)\,\mathrm{d}t + \sigma\big(F(t,\bar{X}_{i}(t))\big)\,\mathrm{d}W_{i}(t) \tag{9}$$

(日) (同) (三) (三)

Proof

There are two parts in the proof

- Tightness
- Identification of the limit

As $n \to \infty$, For every i, we expect $X_i(t)$ to fluctuate around $\bar{X}_i(t)$. The SDEs for $X_i(t)$ and $\bar{X}_i(t)$ are as follows

$$dX_i(t) = b(F_n(t, X_i(t))) dt + \sigma(F_n(t, X_i(t))) dW_i(t)$$
(10)

$$\mathrm{d}\bar{X}_{i}(t) = b\big(F(t,\bar{X}_{i}(t))\big)\,\mathrm{d}t + \sigma\big(F(t,\bar{X}_{i}(t))\big)\,\mathrm{d}W_{i}(t) \tag{11}$$

We expect $X_i(t)$ to be close to $\overline{X}_i(t)$ and the following propogation of chaos estimate gives us the exact sense in which the two particles are close

Brief review of Wasserstein distance on the Real line

Let F(x) and G(x) be two Probability distributions on the Real line, then the p Wasserstein distance between F and G is defined as follows

$$W^{p}_{p}(F,G) = \int_{0}^{1} \left| F^{-1}(t) - G^{-1}(t) \right|^{p} \mathrm{d}t$$
(12)

In view of Kantorovich duality, the 1 Wasserstein distance admits the following representation

$$W_1(F,G) = \int_{-\infty}^{\infty} |F(x) - G(x)| dx$$
(13)

Propogation of Chaos Estimate

Theorem (Kolli, Shkolnikov '16)

For all p > 0 and T > 0 there exists a constant $C = C(p, T) < \infty$ such that

$$\sum_{i=1}^{n} \mathbb{E} \Big[\sup_{0 \le t \le T} \left| X_i(t) - \bar{X}_i(t) \right|^p \Big] \le \frac{C}{n^{p/2-1}}.$$
(14)

In particular, when $p \ge 1$ one has

$$\mathbb{E}\Big[\sup_{0\leq t\leq T} W_{p}^{p}\big(F_{n}(t,x),\overline{F_{n}}(t,x)\big)\Big] \leq C n^{-p/2}.$$
(15)

where $F_n(t,x)$ and $\overline{F_n}(t,x)$ are the empirical CDFs corresponding to the particle systems $X_i(t)$ and $\overline{X_i}(t)$ respectively.

We remark that tightness is a simple consequence of the above estimate.

Identification of the limit

for any smooth test function h(t,x)

$$\int_{\mathbb{R}} h(t,x) \big(G_n(t,x) - G_n(0,x) \big) dx = \int_0^t \int_{\mathbb{R}} h_t(s,x) G_n(s,x) dx ds$$

$$+ \int_{0}^{t} \int_{\mathbb{R}} \sqrt{n} \Big(h_{x}(s,x) (B_{n} - B) \big(F_{n}(s,x) \big) + h_{xx}(s,x) (\Sigma_{n} - \Sigma) \big(F_{n}(s,x) \big) \Big) dxds$$

+
$$\int_{0}^{t} \int_{\mathbb{R}} \sqrt{n} h_{x}(s,x) \big(B \big(F_{n}(s,x) \big) - B \big(F(s,x) \big) \big) dxds$$

+
$$\int_{0}^{t} \int_{\mathbb{R}} \sqrt{n} h_{xx}(s,x) \big(\Sigma \big(F_{n}(s,x) \big) - \Sigma \big(F(s,x) \big) \big) dxds + Martingale term(M_{t}^{n}) \Big) (16)$$

イロト イヨト イヨト イヨト

$$Martingale term(M_t^n) = -\sum_{i=1}^n \int_0^t \frac{h(s, X_i(s))\sigma(F_n(s, X_i(s)))dW_i(s)}{\sqrt{n}}$$
(17)

where
$$B(x) = \int_{0}^{x} b(y) dy$$
, $\Sigma(x) = \int_{0}^{x} \frac{\sigma^{2}(y)}{2} dy$, $B_{n}(\frac{i}{n}) = \frac{\sum_{j=1}^{i} b(\frac{j}{n})}{n}$ and
 $\sum_{n}(\frac{i}{n}) = \frac{\sum_{j=1}^{i} \sigma^{2}(\frac{j}{n})}{2n}$, We also notice that $(B_{n} - B)(F_{n}(s, x)) = O(\frac{1}{n})$ and
similarly $(\Sigma_{n} - \Sigma)(F_{n}(s, x)) = O(\frac{1}{n})$. Upon letting $n \to \infty$, we expect
 $G_{n}(t, x)$ to converge to $G(t, x)$ and we also expect the integrals to
converge appropriately.

E 996

・ロト ・四ト ・ヨト ・ヨト

The limit G(t,x) satisfies the following

$$\int_{\mathbb{R}} h(t,x) \big(G(t,x) - G(0,x) \big) dx = \int_{0}^{t} \int_{\mathbb{R}} h_t(s,x) G(s,x) dx ds$$
$$+ \int_{0}^{t} \int_{\mathbb{R}} \Big(h_x(s,x) b \big(F(s,x) \big) + h_{xx} \frac{\sigma^2 \big(F(s,x) \big)}{2} \Big) G(s,x) dx ds$$
(18)

+ $Martingale term(M_t)$

3

-

• • • • • • • • • • • •

To find out the limit of the Martingale M^n_t , we look at the quadratic variation $\left< M^n \right>_t$

$$\left\langle M^{n}\right\rangle_{t}=\int_{0}^{t}\int_{\mathbb{R}}\left(h(s,x)\sigma(F_{n}(s,x))\right)^{2}dF_{n}(s,x)ds$$
(19)

Now as $n \to \infty$, $\langle M^n \rangle_t \to \langle M \rangle_t$ and $\langle M \rangle_t$ is as follows

$$\langle M \rangle_t = \int_0^t \int_{\mathbb{R}} \left(h(s, x) \sigma(F(s, x)) \right)^2 F_x(s, x) dx ds$$
 (20)

From this we infer that

$$M_t = \int_0^t \int_{\mathbb{R}} h(s, x) \sigma(F(t, x)) \sqrt{F_x(t, x)} dW(s, x)$$
(21)

Praveen(CMU), Misha(Princeton University)

May 18, 2017 16 / 19

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Differentiating wrt t and Integration by parts gives us the SPDE that we want

$$G_{t}(t,x) = -\left(b(F(t,x))G(t,x)\right)_{x} + \frac{\left(\sigma^{2}(F(t,x))G(t,x)\right)_{xx}}{2} + \sigma(F(t,x))\sqrt{F_{x}(t,x)}\dot{W}(t,x)$$

$$(22)$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- M. Shkolnikov (2012). Large systems of diffusions interacting through their ranks. *Stochastic Process. Appl.* 122, pp. 1730–1747.
- B. Jourdain, J. Reygner (2013). Propagation of chaos for rank-based interacting diffusions and long time behaviour of a scalar quasilinear parabolic equation. *Stochastic Partial Differential Equations: Analysis and Computations* **1**, pp. 455–506.
- P. Kolli, M. Shkolnikov(2016). SPDE limit of the global Fluctuations in Rank Based Models. Preprint available at https://arxiv.org/pdf/1608.00814.pdf.

(日) (同) (三) (三)

Thank You

Praveen(CMU), Misha(Princeton University)

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・