Geometry of functionally generated portfolios

Soumik Pal
University of Washington

Rutgers MF-PDE
May 18, 2017

Multiplicative Cyclical Monotonicity

Portfolio as a function on the unit simplex

- Δ - unit simplex in dimension n
- Market weights for n stocks:
- $\mu_{i}=$ Proportion of the total capital that belongs to i th stock.
- Process in time, $\mu(t), t=0,1,2, \ldots$ in Δ.
- Portfolio: $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right) \in \Delta$. Process in time $\pi(t)$.
- Portfolio weights:
$\pi_{i}=$ Proportion of the total value that belongs to i th stock.
- For us $\pi=\pi(\mu): \Delta \rightarrow \bar{\Delta}$.

Relative value

- How does the portfolio π compare with an index, say, S\&P 500?
- Start by investing $\$ 1$ in portfolio and compare with index.
- Relative value process: $V(\cdot)=$ ratio of growth of $\$ 1$.

$$
\frac{\Delta V(t)}{V(t)}=\sum_{i=1}^{n} \pi_{i}(t) \frac{\Delta \mu_{i}(t)}{\mu_{i}(t)}, \quad V(0)=1
$$

- Δ^{*} - subset of unit simplex (e.g. simplex with cut corners).
- $\pi=\pi(\mu)$ pseudo-arbitrage on Δ^{*} if $\exists \epsilon>0, V(t) \geq \epsilon$ for all possible paths $\{\mu(\cdot)\} \subseteq \Delta^{*} . \lim _{t \rightarrow \infty} V(t)=\infty$ for some path.

Does there exist pseudo-arbitrage portfolio functions?

- The special case of cycles.

- Market cycles through a sequence of size m.
- Let $\eta=V(m+1)$. Dichotomy: $\eta<1$, or $\eta \geq 1$.
- After k cycles: $V(k(m+1))=\eta^{k} \rightarrow 0$, if $\eta<1$.
- If π has to be a pseudo-arbitrage, it must be multiplicative cyclically monotone.

Functionally generated portfolios. Fernholz '99

Theorem (Fernholz '99, '02, P.-Wong '14)
π is MCM iff $\exists \Phi: \Delta^{*} \rightarrow(0, \infty)$, concave: $\pi_{i} / \mu_{i} \in \partial \log \Phi(\mu)$. Or,

$$
\pi_{i}(\mu)=\mu_{i}\left[1+D_{e(i)-\mu} \log \Phi(\mu)\right]
$$

If Φ not affine, π is a pseudo-arbitrage in discrete/continuous time.
Outperformance over cycles \Leftrightarrow asymptotic outperformance over all paths.

Examples

- $\varphi: \Delta \rightarrow \mathbb{R} \cup\{-\infty\}$ is exponentially concave if $\Phi=e^{\varphi}$ is concave.

$$
\operatorname{Hess}(\varphi)+\nabla \varphi(\nabla \varphi)^{\prime} \leq 0 .
$$

- Examples: $p, \pi \in \Delta, 0<\lambda<1$.

$$
\begin{aligned}
& \varphi(\mu)=\frac{1}{n} \sum_{i} \log \mu_{i}, \quad \pi(\mu)=(1 / n, 1 / n, \ldots, 1 / n) . \\
& \varphi(\mu)=2 \log \left(\sum_{i} \sqrt{\mu_{i}}\right), \quad \pi_{i}(\mu)=\frac{\sqrt{\mu_{i}}}{\sum_{j=1}^{n} \sqrt{\mu_{j}}} .
\end{aligned}
$$

Several recent occurrences

- Stochastic portfolio theory. Fernholz, Karatzas, Kardaras, Ichiba, Ruf '05 -'16.
- Entropic Curvature-Dimension conditions and Bochner's inequality. Erbar, Kuwada, and Sturm '15.
- Statistics, optimization, machine learning.

Cesa-Bianchi and Lugosi '06, Mahdavi, Zhang, and Jin '15.

- Unified study is lacking. Compare log-concave functions.

The blessings of dimensionality

Apple-Starbucks example

- Pair trading: $n=2 . \pi \equiv(1 / 2,1 / 2)$. Cap-weighted vs. equal weighted.

Growth of \$1

Growth of \$1

- Pair trading is risky and statistically tricky.

Concentration of measure

- Pick Δ^{*} by choosing a feature that is highly concentrated.
- Ordered market weights are typically Pareto: $\log \mu_{(i)} \propto i^{-\alpha}$.
- Slope $\alpha \approx 0.8$. Axtell '01 Science.

The Pareto distribution

- Fix $\alpha \in(1 / 2,1)$. Define $\nu^{(n)} \in \Delta$ by

$$
\nu_{i}^{(n)}=\frac{i^{-\alpha}}{\sum_{j=1}^{n} j^{-\alpha}}
$$

- Consider Dirichlet distribution $\operatorname{Dir}\left(n \nu^{(n)}\right)$.
- Assumption 1: $\left\|\mu(0)-\nu^{(n)}\right\|$ has the same distribution as $\mu(0) \sim \operatorname{Dir}\left(n \nu^{(n)}\right)$.
- Assumption 2: μ is a continuous semimartingale process that is "slow to escape $O(1 / \sqrt{n})$ neighborhoods of $\nu^{(n)}$ ".

Cosine portfolios in high dimensions

- Define exp-concave function on $\left\|\mu-\nu^{(n)}\right\|<\frac{\pi}{2 \sqrt{n}}$.

$$
\varphi(\mu)=\log \cos \left(\sqrt{n}\left\|\mu-\nu^{(n)}\right\|\right) .
$$

- Concentration: Under $\operatorname{Dir}\left(n \nu^{(n)}\right)$,

$$
P\left(\mu:\left\|\mu-\nu^{(n)}\right\|<\frac{\pi}{2 \sqrt{n}}\right) \approx 1 .
$$

- (P. '16) $\exists g_{n}=O\left(n^{\alpha-1 / 2}\right), 1 / 2<\alpha<1$, such that

$$
P\left(\log V(1 / \sqrt{\log n}) \geq g_{n}\right)=1-O\left(\exp \left(-c_{0} n^{(1-\alpha) / 4}\right)\right) .
$$

Performance of cosine portfolios

■ $n=1000 . \alpha \in[0.75,0.95]$. Jun - Dec 2015.

- Distance from Pareto scales like \sqrt{n}.
- Beats the index by 15% in 6 months.

What is the optimal frequency of rebalancing?

Main question

- What is the optimal frequency of rebalancing?
- Weekly/ monthly/ daily/ every second ?
- Suppose $\mu(0)=p, \mu(1)=q, \mu(2)=r$.
- I can rebalance at (i) $t=0,1,2$ or at (ii) $t=0,2$.
- Problem: Given φ exp-concave, can I characterize $(p, q, r) \in \Delta^{3}$ such that (ii) is better than (i).
- I.e., when is trading less frequently better?

A new information geometry

Figure: Plots of q when less trading is better

- "Theorem". (P. and Wong '16) Take any q on boundary. Then (p, q, r) forms a "right angle triangle". The sides are geodesics of a geometry and angles are given by a Riemannian metric.

Monge-Kantorovich transport problem

- P, Q - probability measures on Polish spaces \mathcal{X}, \mathcal{Y}.
- $c: \mathcal{X} \times \mathcal{Y} \rightarrow[-\infty, \infty]$ - cost function.
- Π - set of couplings of P, Q. Probabilities on $\mathcal{X} \times \mathcal{Y}$.

Monge-Kantorovich transport problem

- P, Q - probability measures on Polish spaces \mathcal{X}, \mathcal{Y}.

■ $c: \mathcal{X} \times \mathcal{Y} \rightarrow[-\infty, \infty]$ - cost function.

- Π - set of couplings of P, Q. Probabilities on $\mathcal{X} \times \mathcal{Y}$.
- Find solution to

$$
\inf _{R \in \Pi} R(c(X, Y)) .
$$

- If inf is finite, call value. Solution R - optimal coupling.

Cost - log moment generating function

■ $\mathcal{X}=\bar{\Delta}, \mathcal{Y}=[-\infty, \infty)^{n}$.

$$
c(\mu, \theta)=\log \sum_{i=1}^{n} e^{\theta_{i}} \mu_{i}=\log \mu\left(e^{\theta}\right) .
$$

- Consider
$\inf R(c(\mu, \theta)), \quad$ over all couplings of (P, Q).
- Solution is an optimal coupling (μ, θ).

Exponential change of measures

Theorem (P.-Wong '14)
Consider optimal coupling (μ, θ) for some (P, Q). Let

$$
\pi_{i}=\frac{e^{\theta_{i}} \mu_{i}}{\sum_{j} e^{\theta_{j}} \mu_{j}}, \quad i=1, \ldots, n
$$

Then $\pi=\pi(\mu)$ is a Pseudo-arbitrage on appropriate Δ^{*}.
Conversely every pseudo-arbitrage can be obtained as an optimal coupling for this cost function.
The "geometry" is given by this transport.

Thank you

For more details, see:
■ arxiv.org/abs/1402.3720
■ arxiv.org/abs/1605.05819
■ arxiv.org/abs/1603.01865
The End. Thank you.

