Geometry of functionally generated portfolios

Soumik Pal University of Washington

Rutgers MF-PDE May 18, 2017 ${\sf Multiplicative}\ {\sf Cyclical}\ {\sf Monotonicity}$

Portfolio as a function on the unit simplex

- \blacksquare \triangle unit simplex in dimension *n*
- Market weights for *n* stocks:
- μ_i = Proportion of the total capital that belongs to *i*th stock.
- Process in time, $\mu(t)$, t = 0, 1, 2, ... in Δ .
- Portfolio: $\pi = (\pi_1, \dots, \pi_n) \in \Delta$. Process in time $\pi(t)$.
- Portfolio weights:

 π_i = Proportion of the total value that belongs to *i*th stock.

• For us $\pi = \pi(\mu) : \Delta \to \overline{\Delta}$.

Relative value

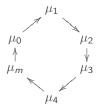
- How does the portfolio π compare with an index, say, S&P 500?
- Start by investing \$1 in portfolio and compare with index.
- Relative value process: $V(\cdot) = \text{ratio of growth of } \1 .

$$\frac{\Delta V(t)}{V(t)} = \sum_{i=1}^n \pi_i(t) \frac{\Delta \mu_i(t)}{\mu_i(t)}, \quad V(0) = 1.$$

- lacktriangle Δ^* subset of unit simplex (e.g. simplex with cut corners).
- $\pi = \pi(\mu)$ pseudo-arbitrage on Δ^* if $\exists \ \epsilon > 0$, $V(t) \ge \epsilon$ for all possible paths $\{\mu(\cdot)\} \subseteq \Delta^*$. $\lim_{t \to \infty} V(t) = \infty$ for some path.

Does there exist pseudo-arbitrage portfolio functions?

■ The special case of cycles.



- Market cycles through a sequence of size *m*.
- Let $\eta = V(m+1)$. Dichotomy: $\eta < 1$, or $\eta \ge 1$.
- After k cycles: $V(k(m+1)) = \eta^k \to 0$, if $\eta < 1$.
- \blacksquare If π has to be a pseudo-arbitrage, it must be multiplicative cyclically monotone.

Functionally generated portfolios. Fernholz '99

Theorem (Fernholz '99, '02, P.-Wong '14) π is MCM iff $\exists \Phi : \Delta^* \to (0, \infty)$, concave: $\pi_i/\mu_i \in \partial \log \Phi(\mu)$. Or, $\pi_i(\mu) = \mu_i \left[1 + D_{e(i)-\mu} \log \Phi(\mu) \right]$

If Φ not affine, π is a pseudo-arbitrage in discrete/continuous time. Outperformance over cycles \Leftrightarrow asymptotic outperformance over all paths.

Examples

 $lacksq \varphi: \Delta o \mathbb{R} \cup \{-\infty\}$ is exponentially concave if $\Phi = e^{\varphi}$ is concave.

$$\operatorname{Hess}(\varphi) + \nabla \varphi (\nabla \varphi)' \leq 0.$$

■ Examples: $p, \pi \in \Delta$, $0 < \lambda < 1$.

$$\varphi(\mu) = \frac{1}{n} \sum_{i} \log \mu_i, \quad \pi(\mu) = (1/n, 1/n, \dots, 1/n).$$

$$\varphi(\mu) = 2\log\left(\sum_{i}\sqrt{\mu_{i}}\right), \quad \pi_{i}(\mu) = \frac{\sqrt{\mu_{i}}}{\sum_{j=1}^{n}\sqrt{\mu_{j}}}.$$

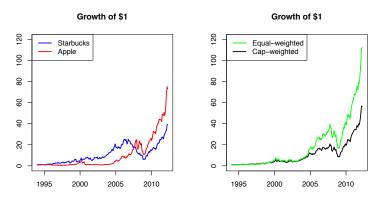
Several recent occurrences

- Stochastic portfolio theory. Fernholz, Karatzas, Kardaras, Ichiba, Ruf '05 - '16.
- Entropic Curvature-Dimension conditions and Bochner's inequality. Erbar, Kuwada, and Sturm '15.
- Statistics, optimization, machine learning.
 Cesa-Bianchi and Lugosi '06, Mahdavi, Zhang, and Jin '15.
- Unified study is lacking. Compare log-concave functions.

The blessings of dimensionality $% \left(1\right) =\left(1\right) \left(1\right)$

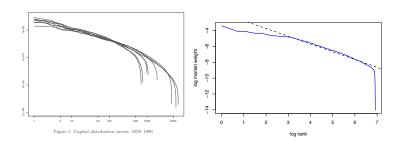
Apple-Starbucks example

■ Pair trading: n = 2. $\pi \equiv (1/2, 1/2)$. Cap-weighted vs. equal weighted.



■ Pair trading is risky and statistically tricky.

Concentration of measure



- Pick Δ^* by choosing a feature that is highly concentrated.
- Ordered market weights are typically Pareto: $\log \mu_{(i)} \propto i^{-\alpha}$.
- Slope $\alpha \approx$ 0.8. Axtell '01 *Science*.

The Pareto distribution

■ Fix $\alpha \in (1/2,1)$. Define $\nu^{(n)} \in \Delta$ by

$$\nu_i^{(n)} = \frac{i^{-\alpha}}{\sum_{j=1}^n j^{-\alpha}}.$$

- Consider Dirichlet distribution Dir $(n\nu^{(n)})$.
- Assumption 1: $\|\mu(0) \nu^{(n)}\|$ has the same distribution as $\mu(0) \sim \text{Dir}(n\nu^{(n)})$.
- Assumption 2: μ is a continuous semimartingale process that is "slow to escape $O(1/\sqrt{n})$ neighborhoods of $\nu^{(n)}$ ".

Cosine portfolios in high dimensions

■ Define exp-concave function on $\|\mu - \nu^{(n)}\| < \frac{\pi}{2\sqrt{n}}$.

$$\varphi(\mu) = \log \cos \left(\sqrt{n} \left\| \mu - \nu^{(n)} \right\| \right).$$

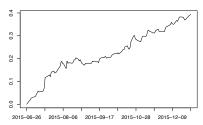
■ Concentration: Under Dir $(n\nu^{(n)})$,

$$P\left(\mu: \left\|\mu - \nu^{(n)}\right\| < \frac{\pi}{2\sqrt{n}}\right) \approx 1.$$

• (P. '16) $\exists g_n = O(n^{\alpha-1/2}), 1/2 < \alpha < 1$, such that

$$P\left(\log V(1/\sqrt{\log n}) \ge g_n\right) = 1 - O\left(\exp\left(-c_0 n^{(1-lpha)/4}\right)\right).$$

Performance of cosine portfolios



- n = 1000. $\alpha \in [0.75, 0.95]$. Jun Dec 2015.
- Distance from Pareto scales like \sqrt{n} .
- Beats the index by 15% in 6 months.

What is the optimal frequency of rebalancing?

Main question

- What is the optimal frequency of rebalancing?
- Weekly/ monthly/ daily/ every second ?
- Suppose $\mu(0) = p$, $\mu(1) = q$, $\mu(2) = r$.
- I can rebalance at (i) t = 0, 1, 2 or at (ii) t = 0, 2.
- Problem: Given φ exp-concave, can I characterize $(p, q, r) \in \Delta^3$ such that (ii) is better than (i).
- I.e., when is trading less frequently better?

A new information geometry

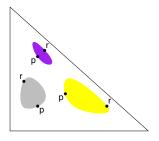


Figure : Plots of q when less trading is better

"Theorem". (P. and Wong '16) Take any q on boundary. Then (p, q, r) forms a "right angle triangle". The sides are geodesics of a geometry and angles are given by a Riemannian metric.

Monge-Kantorovich transport problem

- \blacksquare P,Q probability measures on Polish spaces \mathcal{X},\mathcal{Y} .
- $\mathbf{c}: \mathcal{X} \times \mathcal{Y} \to [-\infty, \infty]$ cost function.
- Π set of couplings of P, Q. Probabilities on $\mathcal{X} \times \mathcal{Y}$.

Monge-Kantorovich transport problem

- \blacksquare P, Q probability measures on Polish spaces \mathcal{X}, \mathcal{Y} .
- $\mathbf{c}: \mathcal{X} \times \mathcal{Y} \to [-\infty, \infty]$ cost function.
- Π set of couplings of P, Q. Probabilities on $\mathcal{X} \times \mathcal{Y}$.
- Find solution to

$$\inf_{R\in\Pi}R\left(c(X,Y)\right).$$

■ If inf is finite, call value. Solution *R* - optimal coupling.

Cost - log moment generating function

 $\mathbb{Z} = \overline{\Delta}, \ \mathcal{Y} = [-\infty, \infty)^n.$

$$c(\mu, \theta) = \log \sum_{i=1}^{n} e^{\theta i} \mu_{i} = \log \mu \left(e^{\theta} \right).$$

Consider

inf
$$R(c(\mu, \theta))$$
, over all couplings of (P, Q) .

■ Solution is an optimal coupling (μ, θ) .

Exponential change of measures

Theorem (P.-Wong '14)

Consider optimal coupling (μ, θ) for some (P, Q). Let

$$\pi_i = \frac{\mathrm{e}^{\theta_i} \mu_i}{\sum_i \mathrm{e}^{\theta_j} \mu_j}, \quad i = 1, \dots, n.$$

Then $\pi = \pi(\mu)$ is a Pseudo-arbitrage on appropriate Δ^* .

Conversely every pseudo-arbitrage can be obtained as an optimal coupling for this cost function.

The "geometry" is given by this transport.

Thank you

For more details, see:

- arxiv.org/abs/1402.3720
- arxiv.org/abs/1605.05819
- arxiv.org/abs/1603.01865

The End. Thank you.