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Let X and Y be random variables defined on the same probability space and
suppose that Y has a discrete distribution. Let RY be the essential range of
Y , i.e. {y ∈ R : P (Y = y) > 0}. Note that RY is either a finite or countably
infinite subset of R. Then if a ∈ R and y ∈ RY , we define the conditional
distribution function

F (a|y) = P (X ≤ a|Y = y) = P (X ≤ a, Y = y)/P (Y = y).

Since the probability of an event is the same as the expected value of the indi-
cator random variable for that event, we can also think of conditional probabili-
ties in terms of conditional expectations. Namely, if we let ga(X) = I(−∞,a](X),
then we can write

E(ga(X)|Y = y) = P (X ≤ a|Y = y),

and call this the conditional expectation of ga(X) given Y = y for y ∈ RY .

A new point of view: Suppose we fix a ∈ R and let y vary over RY .
Then the values of F (a|y) define a new function F (a|·) on RY . In fact we can
extend this function to R by defining its value to be 0 on the complement of
RY . Consequently, if we compose this new function with the random variable
Y , we get a new random variable which we can write as

F (a|Y ) =
∑

y∈RY

F (a|y)I{y}(Y ).

Note that for 0 ≤ p ≤ 1 the event

{F (a|Y ) = p} ∩ {Y ∈ RY } = {Y ∈
⋃
{y ∈ RY : F (a|y) = p}}

and, hence, F (a|Y ) is a discrete random variable taking values in the interval
[0, 1]. We refer to this random variable as the conditional probability that X ≤ a
given Y or as the conditional expectation of ga(X) given Y .

Generalizing these ideas: Suppose Z = g(X,Y ) is a random variable,
defined on the same sample space as X and Y , such that E(|Z|) < ∞. Examples
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of such random variables are the indicators ga(X) described above and, more
interestingly, gY (X) = IX≤Y . Then, for y ∈ RY , we define the conditional
expectation

E(Z|y) = E(ZI{y}(Y ))/P (Y = y).

Once again, we can think of this conditional expectation as a function E(Z|·)
defined on RY and extended to R. So, composing this function with Y , we get
a random variable

E(Z|Y ) =
∑

y∈RY

E(Z|y)I{y}(Y )

which we call the conditional expectation of Z given Y . Note that for r ∈ R
the event

{E(Z|Y ) = r} ∩ {Y ∈ RY } = {Y ∈
⋃
{y ∈ RY : E(Z|y) = r}},

so that E(Z|Y ) is a discrete random variable.
Here are the two most important special cases:

1. Suppose X also has a discrete distribution with essential range RX . Define
the conditional probability mass function pX|Y (x|y) = P (X = x|Y = y)
for x ∈ RX and y ∈ RY . Then

E(g(X,Y )|y) =
∑

x∈RX

g(x, y)pX|Y (x|y).

2. Suppose that for each y ∈ RY there is a conditional probability density
function fX|Y (·|y) such that for a ∈ R

P (X ≤ a|Y = y) =
∫ a

−∞
fX|Y (x|y) dx.

Then
E(g(X, Y )|y) =

∫ ∞

∞
g(x, y)fX|Y (x|y) dx.

Properties of Conditional Expectations

1. Conditional expectation, given the discrete random variable Y , is a lin-
ear operator on the vector space of random variables that are defined on
the same sample space as Y and have finite expected values. This oper-
ator maps the entire vector space into the subspace consisting of random
variables that are functions of Y .

2. The expected value of the conditional expectation random variable is the
same as the expected value of the random variable on which the condi-
tioning is made, i.e.

E((E(Z|Y )) = E(Z).
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To see this, recall that since the random variable E(Z|Y ) is a function
of the random variable Y , its expectation can be computed using the
distribution of Y . Namely,

E(E(Z|Y )) =
∑

y∈RY

E(Z|y)P (Y = y)

=
∑

y∈RY

E(ZI{y}(Y ))

= E(Z
∑

y∈RY

I{y}(Y ))

= E(Z)

since
∑

y∈RY
I{y}(Y ) = IRY

(Y ) = 1 with probability one. Note that
interchanging the sum and expectation is allowed since E(|Z|) < ∞.

3. If h is a bounded function defined on RY and is extended to R as above,
then with probability one

E(h(Y )Z|Y ) = h(Y )E(Z|Y ).

First, to show that h(Y )Z has finite expectation, observe that since h is
bounded on RY , there exists a positive number M such that with proba-
bility one, |h(Y )| ≤ M . Therefore, E(|h(Y )Z|) ≤ ME(|Z|) < ∞. Next, if
y ∈ RY , then

E(h(Y )Z|y) = E(h(Y )ZI{y}(Y ))/P (Y = y)
= h(y)E(ZI{y}(Y ))/P (Y = y)
= h(y)E(Z|y).

Since P (Y ∈ RY ) = 1, the result follows. We conclude that the lin-
ear operator of conditional expectation with respect to Y treats bounded
functions of Y as if they were scalars.

4. The previous results show that for every function h which is bounded on
RY ,

E(h(Y )E(Z|Y )) = E(h(Y )Z).

We claim that E(Z|Y ) is, up to a set of probability zero, the unique
function of the random variable Y with this property. For suppose that
E(Y ) is another such function. Then, letting h = I{y} for y ∈ RY , we see
that

E(E(Y )I{y}(Y )) = E(y)P (Y = y) = E(ZI{y}(Y )).

Therefore, E(y) = E(Z|y) for every y ∈ RY and, hence, E(Y ) = E(Z|Y )
with probability one.
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Further generalizations: If the distribution of Y is not discrete, it is still
possible to define the conditional expectation operator with respect to Y in such
a way that all of the properties listed above will hold. In particular, E(Z|Y )
is again a function of the random variable Y , defined uniquely up to a set of
probability zero, and has expected value equal to E(Z). Thus, for example, if
the distribution of Y is described by a probability density function fY , we can
compute the expected value of E(Z|Y ) and, hence, the expected value of Z by
using this density function. The computation goes as follows:

E(Z) = E(E(Z|Y )) =
∫ ∞

−∞
E(Z|y)fY (y)dy.

The most important special case of this situation occurs when Z = g(X,Y )
with the joint distribution of X and Y described by a joint probability density
function fX,Y . Observe that on the one hand we have

P (X ≤ a) =
∫ a

−∞
fX(x) dx =

∫ ∞

−∞

∫ a

−∞
fX,Y (x, y) dx dy

and, on the other hand,

P (X ≤ a) =
∫ ∞

−∞
P (X ≤ a|Y = y)fY (y) dy,

Consequently,

P (X ≤ a|Y = y) =
∫ a

−∞

fX,Y (x, y)
fY (y)

dx

so that the conditional distribution of X given Y = y is described by the con-
ditional density function defined, whenever fY (y) > 0, by

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

Consequently,

E(g(X, Y )|y) =
∫ ∞

∞
g(x, y)fX|Y (x|y) dx

whenever fY (y) > 0.
The existence of the conditional expectation in general is guaranteed by a

famous result from the theory of measure and integration called the Radon-
Nikodym Theorem. In the special case that Z = ga(X) = I(−∞,a](X), we
continue to call the resulting random variable the conditional probability that
X ≤ a given Y .
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